Suppose I have two NumPy arrays
x = [[1, 2, 8],
[2, 9, 1],
[3, 8, 9],
[4, 3, 5],
[5, 2, 3],
[6, 4, 7],
[7, 2, 3],
[8, 2, 2],
[9, 5, 3],
[10, 2, 3],
[11, 2, 4]]
y = [0, 0, 1, 0, 1, 1, 2, 2, 2, 0, 0]
Note:
(values in x are not sorted in any way. I chose this example to better illustrate the example)
(These are just two examples of x and y. values of x and y can be arbitrarily many different numbers and y can have arbitrarily different numbers, but there are always as many values in x as there are in y)
I want to efficiently split the array x into sub-arrays according to the values in y.
My desired outputs would be
z_0 = [[1, 2, 8],
[2, 9, 1],
[4, 3, 5],
[10, 2, 3],
[11, 2, 4]]
z_1 = [[3, 8, 9],
[5, 2, 3],
[6, 4, 7],]
z_2 = [[7, 2, 3],
[8, 2, 2],
[9, 5, 3]]
Assuming that y starts with zero and is not sorted but grouped, what is the most efficient way to do this?
Note: This question is the unsorted version of this question: Split a NumPy array into subarrays according to the values (sorted in ascending order) of another array
y?xis a point-cloud andyis the label of each point inxaccording to a clustering algorithm.zwould be all the clustered sub-point-clouds of the original point cloudx