I am using TensorFlow 2.x object detection API. I have trained a deep learning model from the model zoo on my dataset. I am using Google Colab. After training now I want to evaluate my model. I am using coco detection metrics. I used the following script to evaluate my model,
!python3 model_main_tf2.py \
--model_dir = path/to/model directory \
--pipeline_config_path = path/to/pipeline config file \
--checkpoint_dir = path/to/checkpoint directory
After running the above code I get the mean average precision (mAP) and average recall (AR) for the latest checkpoint on my test set. But for academic purposes, I want to get these metrics on all the checkpoints to get a graph of how my model has improved over time. Is there a possible way to that? or is it possible to train and evaluate at the same time in TensorFlow 2 object detection API? I am a beginner in this field so kindly help me out with this issue. Thank you.