I am looking into creating a big dataframe (pandas) from several individual frames. The data is organized in MF4-Files and the number of source files varies for each cycle. The goal is to have this process automated.
Creation of Dataframes:
df = (MDF('File1.mf4')).to_dataframe(channels)
df1 = (MDF('File2.mf4')).to_dataframe(channels)
df2 = (MDF('File3.mf4')).to_dataframe(channels)
These Dataframes are then merged:
df = pd.concat([df, df1, df2], axis=0)
How can I do this without dynamically creating variables for df, df1 etc.? Or is there no other way?
I have all filepathes in an Array of the form:
Filepath = ['File1.mf4', 'File2.mf4','File3.mf4',]
Now I am thinking of looping through it and create dynamically the data frames df,df1.df1000.... Any advice here?
Edit here is the full code:
df = (MDF('File1.mf4')).to_dataframe(channels)
df1 = (MDF('File2.mf4')).to_dataframe(channels)
df2 = (MDF('File3.mf4')).to_dataframe(channels)
#The Data has some offset:
x = df.index.max()
df1.index += x
x = df1.index.max()
df2.index += x
#With correct index now the data can be merged
df = pd.concat([df, df1, df2], axis=0)
def funct(*argv):.