This problem is probably going to be solved much faster with a Numba-compiled function:
@nb.jit
def expand_range(values, counts):
n = len(values)
m = np.sum(counts)
r = np.zeros((m,), dtype=values.dtype)
k = 0
for i in range(n):
x = values[i]
for j in range(counts[i]):
r[k] = x + j
k += 1
return r
On the very small inputs:
%timeit expand_range(a, ranges)
# 1.16 µs ± 126 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit x = pd.Series(np.repeat(a, ranges)); x.add(x.groupby(x).cumcount()).to_numpy()
# 617 µs ± 4.32 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.hstack([np.arange(start, start+size) for start, size in zip(a, ranges)])
# 25 µs ± 2.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit np.array([i for j in range(len(a)) for i in range(a[j],a[j]+ranges[j])])
# 13.5 µs ± 929 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
and on somewhat larger inputs:
b = np.random.randint(0, 1000, 1000)
b_ranges = np.random.randint(1, 10, 1000)
%timeit expand_range(b, b_ranges)
# 5.07 µs ± 98.1 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%timeit x = pd.Series(np.repeat(a, ranges)); x.add(x.groupby(x).cumcount()).to_numpy()
# 617 µs ± 4.32 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit np.hstack([np.arange(start, start+size) for start, size in zip(a, ranges)])
# 25 µs ± 2.2 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%timeit np.array([i for j in range(len(a)) for i in range(a[j],a[j]+ranges[j])])
# 13.5 µs ± 929 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
these show that with Numba-based approach winning the speed gain is at least 100x over any of the other approaches proposed so far.
With the numbers closer to what as been indicated in one of the comments by the OP:
b = np.random.randint(10, 1000, 1000)
b_ranges = np.random.randint(100, 1000, 1000)
%timeit expand_range(b, b_ranges)
# 1.5 ms ± 67.9 µs per loop (mean ± std. dev. of 7 runs, 1000
%timeit x = pd.Series(np.repeat(b, b_ranges)); x.add(x.groupby(x).cumcount()).to_numpy()
# 91.8 ms ± 6.53 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
%timeit np.hstack([np.arange(start, start+size) for start, size in zip(b, b_ranges)])
# 10.7 ms ± 402 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit np.array([i for j in range(len(b)) for i in range(b[j],b[j]+b_ranges[j])])
# 144 ms ± 4.54 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
which is still at least a respectable 7x over the others.
hstackwith a list comprehension involvingarangeseems to be the most straightforward solution.np.repeat(a, ranges), as it will producearray([10, 10, 9, 9, 9, 9, 12, 12, 12]). I am just a bit stuck on how to convert the consecutive repeats to ranges