I slightly modify your original function to make clearer what's going on (so it should be clearer which parameter is callable!)
# given a function it evaluates it at value p
def eval(func): # your foo
return lambda p: func(p)
# given a value p perform a double composition of the function at this value (2-step recursion)
def iter_2(p): # your bar
return lambda func: func(func(p))
increment = lambda x: x + 1 # variable binding only for readability
This example is quite hard to understand because one of the function, eval just do nothing special, and it composition is equivalent to the identity! ... so it could be quite confusing.
x = 2
iter_2(x)(increment) # increment by 2 because iter_2 calls increment twice
# 4
- idempotency: (or composition with itself return the identity function)
increment(3) == eval(increment)(3)
# True
# idempotency - second composition is equivalent to the identity
eval(increment)(3) == eval(eval)(increment)(3)
# True
eval(increment)(3) == eval(eval)(eval)(increment)(3)
# True
# ... and so on
- final: consequence of idempotency ->
bar do nothing, just confusion
eval(eval)(iter_2)(x)(increment) == iter_2(x)(increment)
# True
Remark:
in (bar)(bar)(foo)(2)(lambda x:x+1) you can omit the brackets around the 1st term, just bar(bar)(foo)(2)(lambda x:x+1)
Digression: [since you example is quite scaring]
Lambda functions are also known as anonymous function. Why this? Simply because that they don't need to be declared. They are designed to be single purpose, so you should "never" assign to a variable. The arise for example in the context of functional programming where the basic ingredients are... functions! They are used to modify the behavior of other functions (for example by decoration!). Your example it is just a standalone syntactical one... essentially a nonsense example which hides the truth "power" of the lambda functions. There is also a branch mathematics which based on them called lambda calculus.
Here a totally different example of application of the lambda functions, useful for decoration (but this is another story):
def action(func1):
return lambda func2: lambda p: func2(p, func1())
def save(path, content):
print(f'content saved to "{path}"')
def content():
return 'content' # i.e. from a file, url, ...
# call
action(content)(save)('./path')
# with each key-parameter would be
action(func1=content)(func2=save)(p='./path')
Output
content saved to "./path"