0

Here I have concatenated some 5-6 columns and got the array in "new column1".

Now I want to remove blank strings from this column and get the result as shown in filtered column as follows:

This is part of big dataframe df.

new_column1                                                           Filtered Column
['631-335-3414', '631-677-3675', '', '', 458665290.0]
['', '216-937-5320', '', '01714-737668', '', 497622620.0]
['973-654-1561', '973-662-8988', '01347-368222','08-5558-9019', 427885282.0]
['', '', '01912-771311', '01302-601380', '02-6044-4682', 443795912.0]
['973-544-2677', '973-986-4456', '01547-429341', '01290-367248',"]
['', '', '01865-582516', '1362620532', '08-6522-8931', 42799688.0]
['303-301-4946', '303-521-9860', '', '', '02-5226-9402', 415961606.0]
['', 9403023036.0, 01340713951.0]


Filtered Column
['631-335-3414', '631-677-3675', 458665290]
['216-937-5320', '01714-737668', 497622620]
['973-654-1561', '973-662-8988', '01347-368222', '08-5558-9019', 427885282]
[ '01912-771311', '01302-601380', '02-6044-4682', 443795912]
['973-544-2677', '973-986-4456', '01547-429341', '01290-367248']
['01865-582516', '1362620532', '08-6522-8931', 42799688]
['303-301-4946', '303-521-9860', '02-5226-9402', 415961606]
[9403023036, 01340713951]

I tried to use following codes but its not helping.

def remve(a):
    while("" in a):
        a.remove("")
        return a 
df1[' filtered column ']=df1[' new_columnn1 '].astype(str).apply(remve)

1 Answer 1

1

If your column contains list, try:

df['Filtered Column'] = df['new_column1'].apply(lambda x: [i for i in x if i != ''])

Output:

>>> df
                                         new_column1                                    Filtered Column
0      [631-335-3414, 631-677-3675, , , 458665290.0]          [631-335-3414, 631-677-3675, 458665290.0]
1    [, 216-937-5320, , 01714-737668, , 497622620.0]          [216-937-5320, 01714-737668, 497622620.0]
2  [973-654-1561, 973-662-8988, 01347-368222, 08-...  [973-654-1561, 973-662-8988, 01347-368222, 08-...
3  [, , 01912-771311, 01302-601380, 02-6044-4682,...  [01912-771311, 01302-601380, 02-6044-4682, 443...
4  [973-544-2677, 973-986-4456, 01547-429341, 012...  [973-544-2677, 973-986-4456, 01547-429341, 012...
5  [, , 01865-582516, 1362620532, 08-6522-8931, 4...  [01865-582516, 1362620532, 08-6522-8931, 42799...
6  [303-301-4946, 303-521-9860, , , 02-5226-9402,...  [303-301-4946, 303-521-9860, 02-5226-9402, 415...
7                     [, 9403023036.0, 1340713951.0]                       [9403023036.0, 1340713951.0]
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.