I have a CSV file that is formatted like below.
@QWERTY
@Equipment01
@Datetime;A;B;C;D
21/02/2005 17:55;23;451;42;31;
21/02/2005 17:50;24;143;24;54;
21/02/2005 17:45;25;513;31;31;
@Equipment02
@Datetime;A;B;C;D
21/02/2005 17:55;43;1;42;58;
21/02/2005 17:50;14;3;65;51;
21/02/2005 17:45;3;3;91;53;
21/02/2005 17:40;31;35;13;31;
21/02/2005 17:35;34;54;61;5;
@PersonalGear01
@Datetime;A;B;C;D;E;F
21/02/2005 17:55;41;23;2;16;0;6;
21/02/2005 17:50;3;95;51;14;0;6;
21/02/2005 17:45;3;2;91;53;0;6;
@Equipment00
@Datetime;A;B;C;D
@PersonalGear02
@Datetime;A;B;C;D;E;F
21/02/2005 17:55;41;23;2;16;0;6;
21/02/2005 17:50;3;95;51;14;0;6;
21/02/2005 17:45;3;2;91;53;0;6;
Each equipment and personal gear will have delimiter datetime data rows. In some cases, there may be no datetime data row (e.g @Equipment00). The number of datetime entries recorded may vary (e.g @Equipment02 has more datetime entries than @Equipment01).
I will like to create multiple dataframes, based on the equipment and personal gears. The expected results based on the above example will be 4 dataframes (@Equipment01, @Equipment02, @PersonalGear01, @Equipment00).
Is there a pandas way of doing this?