If need one row DataFrame compare columns names converted to DataFrame by Index.to_frame with DataFrame.isin, then for mapping True, False to 1,0 convert to integers and transpose:
df = pd.DataFrame(columns=['234','apple','banana','orange'])
l=['apple', 'banana']
df = df.columns.to_frame().isin(l).astype(int).T
print (df)
234 apple banana orange
0 0 1 1 0
If it is nested list use MultiLabelBinarizer:
df = pd.DataFrame(columns=['234','apple','banana','orange'])
L= [['apple', 'banana'], ['apple', 'orange', 'apple']]
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
df = (pd.DataFrame(mlb.fit_transform(L),columns=mlb.classes_)
.reindex(df.columns, fill_value=0, axis=1))
print (df)
234 apple banana orange
0 0 1 1 0
1 0 1 0 1
EDIT: If data are from another DataFrame column solution is very similar like second one:
df = pd.DataFrame(columns=['234','apple','banana','orange'])
df1 = pd.DataFrame({"col":[['apple', 'banana'],['apple', 'orange', 'apple']]})
print (df1)
col
0 [apple, banana]
1 [apple, orange, apple]
from sklearn.preprocessing import MultiLabelBinarizer
mlb = MultiLabelBinarizer()
df = (pd.DataFrame(mlb.fit_transform(df1['col']),columns=mlb.classes_)
.reindex(df.columns, fill_value=0, axis=1))
print (df)
234 apple banana orange
0 0 1 1 0
1 0 1 0 1
df[l] = 1ordf[l] += 1? It's not very clear what you are looking for.