1

I want to create a new column SURV in the clin dataframe based on clin["days_to_death"] values, whereby:

  • 'lts' if NA or more than or equal to 2*365
  • 'non-lts' if condition not met (i.e., less than 2*365)

My code below labeled all the values as 'lts', even when less than 2*365.

clin dataframe:

clin = pd.DataFrame([[1, '45', '44', 1, nan],
        [1, '121', '68', 0, nan],
        [1, '466', '47', 0, '90'],
        [1, '357', '54', 1, '80'],
        [1, '108', '72', 1, '60'],
        [1, '254', '51', 0, '80'],
        [1, '138', '78', 1, '80'],
        [0, nan, '67', 0, '60'],
        [0, nan, '61', 0, '80'],
        [0, nan, '60', 0, '100'],
        [0, nan, '23', 1, '80'],
        [0, nan, '45', 1, '80'],
        [1, '83', '75', 1, '60'],
        [1, '114', '58', 0, nan],
        [0, nan, '45', 1, '100'],
        [0, nan, '63', 0, '40'],
        [1, '159', '64', 1, '80'],
        [0, nan, '64', 0, '40'],
        [0, nan, '65', 0, '80'],
        [0, nan, '53', 1, nan],
        [0, nan, '58', 1, nan],
        [0, nan, '76', 0, '100'],
        [0, nan, '60', 0, nan],
        [0, nan, '21', 1, '90'],
        [1, '57', '78', 1, nan],
        [1, '95', '79', 0, nan],
        [1, '78', '53', 1, '60'],
        [1, '444', '64', 0, '70'],
        [0, nan, '30', 1, '100'],
        [1, '454', '60', 1, nan],
        [1, '98', '56', 1, '80'],
        [1, '62', '59', 0, '80'],
        [1, '460', '49', 0, '100'],
        [1, '364', '70', 0, '60'],
        [1, '29', '49', 0, nan],
        [1, '88', '60', 0, '40'],
        [1, '485', '60', 1, '60'],
        [1, '42', '52', 0, '80'],
        [1, '975', '58', 1, '80'],
        [0, nan, '57', 1, '80'],
        [0, nan, '36', 0, nan],
        [1, '202', '47', 1, '40'],
        [1, '523', '52', 1, '100'],
        [1, '244', '76', 1, '80'],
        [1, '575', '62', 0, '60'],
        [1, '144', '58', 0, nan],
        [1, '368', '72', 1, '60'],
        [1, '54', '83', 0, nan],
        [1, '684', '53', 1, '80'],
        [1, '428', '56', 0, '80'],
        [1, '511', '77', 1, '80'],
        [1, '455', '56', 0, '80'],
        [0, nan, '39', 0, nan],
        [0, nan, '40', 0, '100'],
        [0, nan, '74', 0, '60'],
        [1, '270', '72', 1, nan],
        [1, '577', '78', 1, nan],
        [0, nan, '47', 0, nan],
        [1, '593', '69', 1, nan],
        [1, '36', '72', 0, nan],
        [1, '585', '66', 0, nan],
        [1, '460', '59', 1, nan],
        [1, '379', '73', 1, nan],
        [0, nan, '61', 0, nan],
        [0, nan, '69', 0, nan],
        [0, nan, '54', 1, '70'],
        [1, '105', '67', 0, '100'],
        [0, nan, '73', 1, '70'],
        [0, nan, '51', 0, '90'],
        [0, nan, '58', 0, '100'],
        [0, nan, '77', 0, '100'],
        [0, nan, '55', 1, '80'],
        [1, '146', '76', 0, '100'],
        [1, '138', '68', 0, '80'],
        [1, '535', '58', 0, '80'],
        [1, '94', '85', 1, '80'],
        [1, '111', '76', 1, '80'],
        [1, '279', '70', 1, '80'],
        [1, '1458', '50', 1, '80'],
        [1, '77', '66', 1, '80'],
        [1, '1121', '52', 1, '80'],
        [1, '508', '57', 0, '80'],
        [1, '100', '74', 0, '80'],
        [1, '82', '78', 0, '60'],
        [1, '519', '63', 0, '80'],
        [1, '254', '64', 1, '80'],
        [1, '638', '60', 0, '80'],
        [1, '147', '66', 0, '60'],
        [1, '153', '74', 0, '80'],
        [1, '727', '54', 0, '60'],
        [1, '1048', '58', 0, '80'],
        [1, '567', '44', 1, '80'],
        [0, nan, '49', 1, '80'],
        [1, '180', '68', 0, nan],
        [1, '191', '72', 1, nan],
        [0, nan, '51', 0, nan],
        [1, '625', '55', 0, nan],
        [1, '1448', '63', 1, '60'],
        [1, '375', '68', 0, nan],
        [1, '399', '65', 0, '100'],
        [1, '317', '62', 0, '80'],
        [1, '225', '72', 1, nan],
        [1, '360', '47', 0, '100'],
        [1, '603', '31', 0, '100'],
        [1, '717', '39', 1, nan],
        [1, '414', '81', 1, nan],
        [0, nan, '49', 1, '100'],
        [1, '164', '58', 0, '80'],
        [1, '3667', '64', 1, nan],
        [1, '224', '76', 1, nan],
        [1, '24', '61', 0, '40'],
        [1, '1537', '21', 0, nan],
        [1, '666', '48', 1, nan],
        [1, '141', '51', 0, '80'],
        [0, nan, '43', 0, '80'],
        [0, nan, '59', 0, '80'],
        [0, nan, '74', 0, '60'],
        [0, nan, '65', 1, '60'],
        [0, nan, '57', 0, '80'],
        [0, nan, '65', 1, '80'],
        [1, '454', '72', 0, '80'],
        [1, '343', '71', 0, '70'],
        [1, '544', '52', 0, '70'],
        [0, nan, '66', 1, nan],
        [0, nan, '42', 0, '100'],
        [0, nan, '72', 0, '80'],
        [1, '713', '53', 0, '70'],
        [1, '335', '62', 1, '90'],
        [0, nan, '52', 0, '80'],
        [1, '157', '63', 0, nan],
        [0, nan, '47', 1, '70'],
        [1, '388', '67', 0, '90'],
        [1, '165', '60', 0, nan],
        [1, '346', '57', 0, '80'],
        [1, '165', '71', 1, '0'],
        [1, '114', '73', 0, '0'],
        [1, '49', '64', 0, '40'],
        [0, nan, '33', 0, nan],
        [0, nan, '50', 1, nan]], columns=['vital_status', 'days_to_death', 'age_at_initial_pathologic_diagnosis',
        'gender', 'karnofsky_performance_score'], index="bcr_patient_barcode")

My attempt:

import numpy as np 
import pandas as pd

# Survival info
def survival(clin):
    if np.where(clin["days_to_death"],np.nan,1):
        val = "lts"
    elif clin["days_to_death"].astype(int) >= 2*365:
        val = "lts"
    else:
        val = "non-lts"
    return val


clin['SURV'] = clin.apply(survival, axis=1)

Then I want to drop the NAs in all the columns except for the days_to_death column.

2 Answers 2

1

To create clin['SURV'] column as you want, you can use numpy.select like below:

vals = clin['days_to_death'].astype(np.float32)
condlist = [vals>=2*365, vals<2*365]
choicelist = ['Its', 'nonIts']
clin['SURV'] = np.select(condlist, choicelist, 'Its')

To remove row that contain np.nan you can use dropna(subset=[...]) like below:

clin = clin.dropna(subset=['vital_status', 'age_at_initial_pathologic_diagnosis','gender', 'karnofsky_performance_score'])
Sign up to request clarification or add additional context in comments.

Comments

0

Use .loc

clin.loc[clin["days_to_death"].isna() | (clin["days_to_death"].map(float) >= 2*365), 'SURV'] = 'lts'
clin.loc[clin["SURV"].isna(), 'SURV'] = 'non-lts'

Then remove nans

clin = clin.dropna(subset=['vital_status', 'age_at_initial_pathologic_diagnosis', 'gender', 'karnofsky_performance_score'])

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.