2

I have a question regarding writing json from a python pandas dataframe.

I am reading the data from a csv file with pandas to a dataframe, add some calculated field and then aggregate the data. The dataframe looks the like this:

     country        city          date     chng      population

0        USA     NewYork    2020-01-01     3.55           20.15

1        USA     NewYork    2021-01-01    -1.58           19.84

2         UK      London    2020-01-01     1.38            9.30

3         UK      London    2021-01-01     1.31            9.42

Now I wanna create a json file, which looks somehow like this:

{

    "metrics": [

        {

            "metric": "data.usa.newyork.change",

            "value": 3.55

        },

        {

            "metric": "data.usa.newyork.population",

            " value ": 20.15

        }

    ],

    "metricTime": "2020-01-01",

    "region": "X"

},

{

    "metrics": [

        {

            "metric": "data.usa.newyork.change",

            "value": -1.58

        },

        {

            "metric": "data.usa.newyork.population",

            " value ": 19.84

        }

    ],

    "metricTime": "2021-01-01",

    "region": "X"

},

{

    "metrics": [

        {

            "metric": "data.uk.london.change",

            "value": 1.38

        },

        {

            "metric": "data.uk.london.population",

            " value ": 9.30

        }

    ],

    "metricTime": "2020-01-01",

    "region": "X"

},

{

    "metrics": [

        {

            "metric": "data.uk.london.change",

            "value": 1.31

        },

        {

            "metric": "data.uk.london.population",

            " value ": 9.41

        }

    ],

    "metricTime": "2021-01-01",

    "region": "X"

},

Does someone can help me?

1 Answer 1

1

I hope I've understood your question well. You can try:

out = [
    {
        "metrics:": [
            {
                "metric": f'data.{g["country"].iat[0].lower()}.{g["city"].iat[0].lower()}.change',
                "value": g["chng"].iat[0],
            },
            {
                "metric": f'data.{g["country"].iat[0].lower()}.{g["city"].iat[0].lower()}.population',
                "value": g["population"].iat[0],
            },
        ],
        "metricTime": g["date"].iat[0],
        "region": "X",
    }
    for _, g in df.groupby(["country", "city", "date"])
]

print(out)

Prints:

[
    {
        "metrics:": [
            {"metric": "data.uk.london.change", "value": 1.38},
            {"metric": "data.uk.london.population", "value": 9.3},
        ],
        "metricTime": "2020-01-01",
        "region": "X",
    },
    {
        "metrics:": [
            {"metric": "data.uk.london.change", "value": 1.31},
            {"metric": "data.uk.london.population", "value": 9.42},
        ],
        "metricTime": "2021-01-01",
        "region": "X",
    },
    {
        "metrics:": [
            {"metric": "data.usa.newyork.change", "value": 3.55},
            {"metric": "data.usa.newyork.population", "value": 20.15},
        ],
        "metricTime": "2020-01-01",
        "region": "X",
    },
    {
        "metrics:": [
            {"metric": "data.usa.newyork.change", "value": -1.58},
            {"metric": "data.usa.newyork.population", "value": 19.84},
        ],
        "metricTime": "2021-01-01",
        "region": "X",
    },
]
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.