0

I'm trying to build a dataframe using for loop, below start works perfectly:

import pandas as pd
df = pd.DataFrame(columns=['DATE1', 'SLS_CNTR_ID'])

for i in range(2):
  this_column = df.columns[i]
  df[this_column] = [i, i+1]

df

And I got the correct one:

enter image description here

Then I tried to make my implemetation as below:

import pandas as pd
df = pd.DataFrame(columns=['DATE1', 'SLS_CNTR_ID'])

SLS = [58, 100]

row = 0
for _, slc in enumerate(SLS):
  for single_date in daterange(start_date, end_date):
    df[row] = [single_date.strftime("%Y-%m-%d"), slc]
    row = row + 1

print(type(row), type(df))
df

But the result I got was a horizontal dataframe, not a vertical one

enter image description here

Even the data in the main hedears got posted as NAN?

I tried using enforced header type declaration, but gave same result:

import pandas as pd
import numpy as np
#Create empty DataFrame with specific column names & types
# Using NumPy
dtypes = np.dtype(
    [
        ('DATE1',np.datetime64),
        ('SLS_CNTR_ID', int),     
    ]
)
df = pd.DataFrame(np.empty(0, dtype=dtypes))
#df = pd.DataFrame(columns=['DATE1', 'SLS_CNTR_ID'])

print(df)

SLS = [58, 100]

row = 0
for _, slc in enumerate(SLS):
  for single_date in daterange(start_date, end_date):
    df[row] = [single_date.strftime("%Y-%m-%d"), slc]
    row = row + 1

print(type(row), type(df))
df

1 Answer 1

1

Use df.loc[row] instead of df[row] to set the rows.

Though I'd rather implement this using a merge instead of the loops:

(pd.DataFrame({"DATE1": pd.date_range("2020-01-01", "2020-02-01")})
     .merge(pd.Series(SLS, name="SLS_CNTR_ID"), how="cross"))

Or leverage itertools to obtain the cross-product:

import itertools

dates = pd.date_range("2020-01-01", "2020-02-01")
SLS = [58, 100]

pd.DataFrame(itertools.product(SLS, dates), columns=["SLS_CNTR_ID", "DATE1"])

    SLS_CNTR_ID      DATE1
0            58 2020-01-01
1            58 2020-01-02
2            58 2020-01-03
3            58 2020-01-04
4            58 2020-01-05
..          ...        ...
59          100 2020-01-28
60          100 2020-01-29
61          100 2020-01-30
62          100 2020-01-31
63          100 2020-02-01

[64 rows x 2 columns]
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.