I have a dataframe with name+address/email information based on the type. Based on a type I want to concat name+address or name+email into a new column (concat_name) within the dataframe. Some of the types are null and are causing ambiguity errors. Identifying the nulls correctly in place is where I'm having trouble.
NULL = None
data = {
'Type': [NULL, 'MasterCard', 'Visa','Amex'],
'Name': ['Chris','John','Jill','Mary'],
'City': ['Tustin','Cleveland',NULL,NULL ],
'Email': [NULL,NULL,'[email protected]','[email protected]']
}
df_data = pd.DataFrame(data)
#Expected resulting df column:
df_data['concat_name'] = ['ChrisTustin', 'JohnCleveland','[email protected],'[email protected]']
Attempt one using booleans
if df_data['Type'].isnull() | df_data[df_data['Type'] == 'Mastercard':
df_data['concat_name'] = df_data['Name']+df_data['City']
if df_data[df_data['Type'] == 'Visa' | df_data[df_data['Type'] == 'Amex':
df_data['concat_name'] = df_data['Name']+df_data['Email']
else:
df_data['concat_name'] = 'Error'
Error
ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
Attempt two using np.where
df_data['concat_name'] = np.where((df_data['Type'].isna()|(df_data['Type']=='MasterCard'),df_data['Name']+df_data['City'],
np.where((df_data['Type']=="Visa")|(df_data['Type]=="Amex"),df_data['Name']+df_data['Email'], 'Error'
Error
ValueError: Length of values(2) does not match length of index(12000)
|operator inifloop.