I have this query in PostgreSQL:
SELECT COUNT("contacts"."id")
FROM "contacts"
INNER JOIN "phone_numbers" ON "phone_numbers"."id" = "contacts"."phone_number_id"
INNER JOIN "companies" ON "companies"."id" = "contacts"."company_id"
WHERE (
(
(
CAST("phone_numbers"."value" AS VARCHAR) ILIKE '%a%'
OR CAST("contacts"."first_name" AS VARCHAR) ILIKE '%a%'
)
OR CAST("contacts"."last_name" AS VARCHAR) ILIKE '%a%'
)
OR CAST("companies"."name" AS VARCHAR) ILIKE '%a%'
)
When I run the query it is taking 19secs to run. I need to improve the performance.
Note: I already have the index for the columns.
EXPLAIN ANALYZE report
Finalize Aggregate (cost=209076.49..209076.54 rows=1 width=8) (actual time=6117.381..6646.477 rows=1 loops=1)
-> Gather (cost=209076.42..209076.48 rows=4 width=8) (actual time=6117.370..6646.473 rows=5 loops=1)
Workers Planned: 4
Workers Launched: 4
-> Partial Aggregate (cost=209066.42..209066.47 rows=1 width=8) (actual time=5952.710..5952.723 rows=1 loops=5)
-> Hash Join (cost=137685.37..208438.42 rows=251200 width=8) (actual time=3007.055..5945.571 rows=39193 loops=5)
Hash Cond: (contacts.company_id = companies.id)
Join Filter: (((phone_numbers.value)::text ~~* '%as%'::text) OR ((contacts.first_name)::text ~~* '%as%'::text) OR ((contacts.last_name)::text ~~* '%as%'::text) OR ((companies.name)::text ~~* '%as%'::text))
Rows Removed by Join Filter: 763817
-> Parallel Hash Join (cost=137684.86..201964.34 rows=1003781 width=41) (actual time=3006.633..4596.987 rows=803010 loops=5)
Hash Cond: (contacts.phone_number_id = phone_numbers.id)
-> Parallel Seq Scan on contacts (cost=0.00..59316.85 rows=1003781 width=37) (actual time=11.032..681.124 rows=803010 loops=5)
-> Parallel Hash (cost=68914.22..68914.22 rows=1295458 width=20) (actual time=1632.770..1632.770 rows=803184 loops=5)
Buckets: 65536 Batches: 64 Memory Usage: 4032kB
-> Parallel Seq Scan on phone_numbers (cost=0.00..68914.22 rows=1295458 width=20) (actual time=10.780..1202.242 rows=803184 loops=5)
-> Hash (cost=0.30..0.30 rows=4 width=40) (actual time=0.258..0.258 rows=4 loops=5)
Buckets: 1024 Batches: 1 Memory Usage: 9kB
-> Seq Scan on companies (cost=0.00..0.30 rows=4 width=40) (actual time=0.247..0.248 rows=4 loops=5)
Planning Time: 1.895 ms
Execution Time: 6646.558 ms
Please help me on this performance issue.
I tried FUNCTION row_count_estimate (query text) and it is not giving the exact count.
Solution Tried: I tried the Robert solution and got 16 Secs to run
My Query is:
SELECT Count(id) AS id
FROM (
SELECT contacts.id AS id
FROM contacts
WHERE (
contacts.last_name ilike '%as%')
OR (
contacts.last_name ilike '%as%')
UNION
SELECT contacts.id AS id
FROM contacts
WHERE contacts.phone_number_id IN
(
SELECT phone_numbers.id AS phone_number_id
FROM phone_numbers
WHERE phone_numbers.value ilike '%as%')
UNION
SELECT contacts.id AS id
FROM contacts
WHERE contacts.company_id IN
(
SELECT companies.id AS company_id
FROM companies
WHERE companies.name ilike '%as%' )) AS ID
Report:
Aggregate (cost=395890.08..395890.13 rows=1 width=8) (actual time=5942.601..5942.667 rows=1 loops=1)
-> Unique (cost=332446.76..337963.57 rows=1103362 width=8) (actual time=5929.800..5939.658 rows=101989 loops=1)
-> Sort (cost=332446.76..335205.17 rows=1103362 width=8) (actual time=5929.799..5933.823 rows=101989 loops=1)
Sort Key: contacts.id
Sort Method: external merge Disk: 1808kB
-> Append (cost=10.00..220843.02 rows=1103362 width=8) (actual time=1.158..5900.926 rows=101989 loops=1)
-> Gather (cost=10.00..61935.48 rows=99179 width=8) (actual time=1.158..569.412 rows=101989 loops=1)
Workers Planned: 4
Workers Launched: 4
-> Parallel Seq Scan on contacts (cost=0.00..61826.30 rows=24795 width=8) (actual time=0.446..477.276 rows=20398 loops=5)
Filter: ((last_name)::text ~~* '%as%'::text)
Rows Removed by Filter: 782612
-> Nested Loop (cost=0.84..359.91 rows=402 width=8) (actual time=5292.088..5292.089 rows=0 loops=1)
-> Index Scan using idx_phone_value on phone_numbers (cost=0.41..64.13 rows=402 width=8) (actual time=5292.087..5292.087 rows=0 loops=1)
Index Cond: ((value)::text ~~* '%as%'::text)
Rows Removed by Index Recheck: 4015921
-> Index Scan using index_contacts_on_phone_number_id on contacts contacts_1 (cost=0.43..0.69 rows=1 width=16) (never executed)
Index Cond: (phone_number_id = phone_numbers.id)
-> Gather (cost=10.36..75795.48 rows=1003781 width=8) (actual time=26.298..26.331 rows=0 loops=1)
Workers Planned: 4
Workers Launched: 4
-> Hash Join (cost=0.36..74781.70 rows=250945 width=8) (actual time=3.758..3.758 rows=0 loops=5)
Hash Cond: (contacts_2.company_id = companies.id)
-> Parallel Seq Scan on contacts contacts_2 (cost=0.00..59316.85 rows=1003781 width=16) (actual time=0.128..0.128 rows=1 loops=5)
-> Hash (cost=0.31..0.31 rows=1 width=8) (actual time=0.726..0.727 rows=0 loops=5)
Buckets: 1024 Batches: 1 Memory Usage: 8kB
-> Seq Scan on companies (cost=0.00..0.31 rows=1 width=8) (actual time=0.726..0.726 rows=0 loops=5)
Filter: ((name)::text ~~* '%as%'::text)
Rows Removed by Filter: 4
Planning Time: 0.846 ms
Execution Time: 5948.330 ms
I tried the below also:
EXPLAIN ANALYZE SELECT
count(id) AS id
FROM
(SELECT
contacts.id AS id
FROM
contacts
WHERE
(
position('as' in LOWER(last_name)) > 0
)
UNION
SELECT
contacts.id AS id
FROM
contacts
WHERE
EXISTS (
SELECT
1
FROM
phone_numbers
WHERE
(
position('as' in LOWER(phone_numbers.value)) > 0
)
AND (
contacts.phone_number_id = phone_numbers.id
)
)
UNION
SELECT
contacts.id AS id
FROM
contacts
WHERE
EXISTS (
SELECT
1
FROM
companies
WHERE
(
position('as' in LOWER(companies.name)) > 0
)
AND (
contacts.company_id = companies.id
)
)
UNION DISTINCT SELECT
contacts.id AS id
FROM
contacts
WHERE
(
position('as' in LOWER(first_name)) > 0
)
) AS ID;
Report
Aggregate (cost=1609467.66..1609467.71 rows=1 width=8) (actual time=1039.249..1039.330 rows=1 loops=1)
-> Unique (cost=1320886.03..1345980.09 rows=5018811 width=8) (actual time=999.363..1030.500 rows=195963 loops=1)
-> Sort (cost=1320886.03..1333433.06 rows=5018811 width=8) (actual time=999.362..1013.818 rows=198421 loops=1)
Sort Key: contacts.id
Sort Method: external merge Disk: 3520kB
-> Gather (cost=10.00..754477.62 rows=5018811 width=8) (actual time=0.581..941.210 rows=198421 loops=1)
Workers Planned: 4
Workers Launched: 4
-> Parallel Append (cost=0.00..749448.80 rows=5018811 width=8) (actual time=290.521..943.736 rows=39684 loops=5)
-> Parallel Hash Join (cost=101469.35..164569.24 rows=334587 width=8) (actual time=724.841..724.843 rows=0 loops=2)
Hash Cond: (contacts.phone_number_id = phone_numbers.id)
-> Parallel Seq Scan on contacts (cost=0.00..59315.91 rows=1003762 width=16) (never executed)
-> Parallel Hash (cost=78630.16..78630.16 rows=431819 width=8) (actual time=723.735..723.735 rows=0 loops=2)
Buckets: 131072 Batches: 32 Memory Usage: 0kB
-> Parallel Seq Scan on phone_numbers (cost=0.00..78630.16 rows=431819 width=8) (actual time=723.514..723.514 rows=0 loops=2)
Filter: ("position"(lower((value)::text), 'as'::text) > 0)
Rows Removed by Filter: 2007960
-> Hash Join (cost=0.38..74780.48 rows=250940 width=8) (actual time=0.888..0.888 rows=0 loops=1)
Hash Cond: (contacts_1.company_id = companies.id)
-> Parallel Seq Scan on contacts contacts_1 (cost=0.00..59315.91 rows=1003762 width=16) (actual time=0.009..0.009 rows=1 loops=1)
-> Hash (cost=0.33..0.33 rows=1 width=8) (actual time=0.564..0.564 rows=0 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 8kB
-> Seq Scan on companies (cost=0.00..0.33 rows=1 width=8) (actual time=0.563..0.563 rows=0 loops=1)
Filter: ("position"(lower((name)::text), 'as'::text) > 0)
Rows Removed by Filter: 4
-> Parallel Seq Scan on contacts contacts_2 (cost=0.00..66844.13 rows=334588 width=8) (actual time=0.119..315.032 rows=20398 loops=5)
Filter: ("position"(lower((last_name)::text), 'as'::text) > 0)
Rows Removed by Filter: 782612
-> Parallel Seq Scan on contacts contacts_3 (cost=0.00..66844.13 rows=334588 width=8) (actual time=0.510..558.791 rows=32144 loops=3)
Filter: ("position"(lower((first_name)::text), 'as'::text) > 0)
Rows Removed by Filter: 1306206
Planning Time: 2.115 ms
Execution Time: 1040.620 ms
ILIKE '%a%'is a performance killer. The engine will need to scan the whole columns to decide which rows should be selected. Are you always looking foraor you can also be looking for other characters? In the first case you could use partial indexes.