I have a json file which looks like this:
{
"data": {
"success": true,
"timeseries": true,
"start_date": "2022-10-01",
"end_date": "2022-10-04",
"base": "EUR",
"rates": {
"2022-10-01": {
"NG": 0.1448939471560284
},
"2022-10-02": {
"NG": 0.14487923291390148
},
"2022-10-03": {
"NG": 0.1454857922753868
},
"2022-10-04": {
"NG": 0.1507352356663182
}
},
"unit": "per MMBtu"
}
}
I want to create a dataframe which looks like this:
Date NG base
2022-10-01 0.144894 EUR
2022-10-02 0.144879 EUR
2022-10-03 0.145486 EUR
2022-10-04 0.150735 EUR
This is what I tried:
with open(r'C:\Users\EH\Desktop\tools\json_files\blue_file.json','r') as f:
data = json.loads(f.read())
df1 = pd.DataFrame(data['data']['rates'])
df1 = df1.T
df2 = pd.DataFrame(data['data'])
df2 = df2.base
merge = [df1, df2]
df3 = pd.concat(merge)
print(df3)
My current output:
NG 0
2022-10-01 0.144894 NaN
2022-10-02 0.144879 NaN
2022-10-03 0.145486 NaN
2022-10-04 0.150735 NaN
2022-10-01 NaN EUR
2022-10-02 NaN EUR
2022-10-03 NaN EUR
2022-10-04 NaN EUR
As you can see something is not going okay, I dont understand where the NaNs come from.