0

I used `

x_train = np.array([np.array(val) for val in x_train])
y_train = np.array([np.array(val) for val in y_train])

` but I failed to convert numpy to tensor

My code is `

x_train = np.array([np.array(val) for val in x_train])
y_train = np.array([np.array(val) for val in y_train])
model.fit(x_train,y_train,epochs =5,batch_size = 128,validation_split = 0.2,shuffle =True)
test_loss,test_acc = model.evaluate(x_test,y_test)
print('Test loss',test_loss)
print('Accuracy',test_acc)

` Error:

ValueError                                Traceback (most recent call last)
<ipython-input-39-43fd775bb14b> in <module>
      1 x_train = np.array([np.array(val) for val in x_train])
      2 y_train = np.array([np.array(val) for val in y_train])
----> 3 model.fit(x_train,y_train,epochs =5,batch_size = 128,validation_split = 0.2,shuffle =True)
      4 test_loss,test_acc = model.evaluate(x_test,y_test)
      5 print('Test loss',test_loss)

1 frames
/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/constant_op.py in convert_to_eager_tensor(value, ctx, dtype)
    100       dtype = dtypes.as_dtype(dtype).as_datatype_enum
    101   ctx.ensure_initialized()
--> 102   return ops.EagerTensor(value, ctx.device_name, dtype)
    103 
    104 

ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type numpy.ndarray).

My model: `

model = tf.keras.Sequential([
    tf.keras.layers.Embedding(words,embed_size,input_shape =(x_train.shape[0],)),
    tf.keras.layers.Conv1D(128,3,activation = 'relu'),
    tf.keras.layers.MaxPooling1D(),
    tf.keras.layers.LSTM(128,activation = 'tanh'),
    tf.keras.layers.Dense(10,activation='relu',input_dim=300),
    tf.keras.layers.Dense(1,activation='sigmoid',input_dim=300) ])

model.summary()

`

1
  • what's the type of your NumPy array? Commented Nov 17, 2022 at 6:16

1 Answer 1

1

The error you are getting is because of the data type of an array, as Tensorflow models do not support Object data type, So, try to cast these tensors. I am casting it to float32.

x_train = np.array([np.array(val) for val in x_train])
y_train = np.array([np.array(val) for val in y_train])

x_train = tf.cast(x_train , dtype=tf.float32)
y_train = tf.cast(y_train , dtype=tf.float32)
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.