1

I have multiple data frames that I would like to concatenate. Some of these do not have certain columns so should be filled with NA.

df1_1 = pd.DataFrame({'id':[1,1,2,2,3,3], 'age':[22,22,55,55,53,53], 'group':1,'y':[1,2,3,4,5,6]})
df1_2 = pd.DataFrame({'id':[1,1,2,2,3,3], 'age':[22,22,55,55,53,53], 'group':1,'w':[7,8,9,10,11,12]})

df2 = pd.DataFrame({'id':[4,4,5,5], 'age':[39,39,54,54], 'group':2,'y':[1,2,3,4]})
df2_2 = pd.DataFrame({'id':[4,4,5,5], 'age':[39,39,54,54], 'group':2,'w':[5,6,7,8]})

df3 = pd.DataFrame({'id':[1,1,6,6,7,7,8,8], 'age':[23,23,63,63,43,43,25,25],'group':3,'w':[1,2,3,4,5,6,7,8]})

Desired output:

id  age  group  y   w
1   22      1   1   7
1   22      1   2   8
2   55      1   3   9
2   55      1   4  10
3   53      1   5  11
3   53      1   6  12
4   39      2   1   5
4   39      2   2   6
5   54      2   3   7
5   54      2   4   8
1   23      3  NA   1
1   23      3  NA   2
6   63      3  NA   3
6   63      3  NA   4
7   43      3  NA   5
7   43      3  NA   6
8   25      3  NA   7
8   25      3  NA   8 

I tried

from functools import reduce
dfs = [df1_1,df1_2,df2_1,df2_2,df3]
df_merged = reduce(lambda  left,right: pd.merge(left,right,on=['id','group','age'], how='outer'), dfs)
df_merged = pd.concat(dfs, join='outer', axis=0)

but none of my attempts worked

1 Answer 1

1

You can try to de-duplicate the index with groupby.cumcount, then concat, and aggregate with groupby.first:

keys = ['id', 'age', 'group']

out = (pd
   .concat([x.assign(n=lambda d: d.groupby(keys).cumcount())
             .set_index(keys+['n'])
            for x in dfs])
   .groupby(level=keys+['n'], sort=False).first()
   .reset_index().drop(columns='n')  
)

Output:

    id  age  group    y     w
0    1   22      1  1.0   7.0
1    1   22      1  2.0   8.0
2    2   55      1  3.0   9.0
3    2   55      1  4.0  10.0
4    3   53      1  5.0  11.0
5    3   53      1  6.0  12.0
6    4   39      2  1.0   5.0
7    4   39      2  2.0   6.0
8    5   54      2  3.0   7.0
9    5   54      2  4.0   8.0
10   1   23      3  NaN   1.0
11   1   23      3  NaN   2.0
12   6   63      3  NaN   3.0
13   6   63      3  NaN   4.0
14   7   43      3  NaN   5.0
15   7   43      3  NaN   6.0
16   8   25      3  NaN   7.0
17   8   25      3  NaN   8.0
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.