This is a follow-up question to this post: Pandas setting a value depending on date ranges on another dataframe
If there are rows in the transactions dataframe that don't have a matching agentname in the rate dataframe, how can we still keep those rows but put in a null/na value for the agentname_rates column?
Rates table
Agentname ProductType OldRate NewRate StartDate EndDate
0 VSFAAL SPORTS 0.0 10.0 2020-11-05 2021-01-18
1 VSFAAL APPAREL 0.0 35.0 2020-11-05 2022-05-03
2 VSFAAL SPORTS 10.0 15.0 2021-01-18 2022-05-03
3 VSFAALJS SPORTS 0.0 10.0 2020-11-07 2022-05-03
4 VSFAALJS APPAREL 0.0 15.0 2020-11-07 2021-11-09
5 VSFAALJS APPAREL 15.0 5.0 2021-11-09 2022-05-03
Transactions table
Date Sales Agentname ProductType
0 2020-12-01 08:00:02 100.0 VSFAAL SPORTS
1 2022-03-01 08:00:09 99.0 VSFAAL APPAREL
2 2022-03-01 08:00:14 75.0 VSFAAL SPORTS
3 2021-05-01 08:00:39 67.0 VSFAALJS SPORTS
4 2020-05-01 08:00:56 160.0 VSFAALJS APPAREL
5 2021-05-01 08:00:56 65.0 VSFAALJS APPAREL
6 2021-06-03 09:07:33 55.0 VSRANDOM SPORTS
Desired Output
Date Sales Agentname ProductType Agentname_rates
0 2020-12-01 08:00:02 100.0 VSFAAL SPORTS 10.0
1 2022-03-01 08:00:09 99.0 VSFAAL APPAREL 35.0
2 2022-03-01 08:00:14 75.0 VSFAAL SPORTS 15.0
3 2021-05-01 08:00:39 67.0 VSFAALJS SPORTS 10.0
4 2020-05-01 08:00:56 160.0 VSFAALJS APPAREL NULL
5 2021-05-01 08:00:56 65.0 VSFAALJS APPAREL 15.0
6 2021-06-03 09:07:33 55.0 VSRANDOM SPORTS NULL
The following code merges the two tables but does not retain have the two rows with null that I want to keep.
df3=df2.merge(df[['StartDate', 'EndDate','NewRate']],
left_on =[df2['Agentname'], df2['ProductType']],
right_on=[df['Agentname'], df['ProductType']],
how='left',
suffixes=('','_start')
).drop(columns=['key_0', 'key_1' ])
df3[df3['Date'].astype('datetime64').dt.strftime('%Y-%m-%d').between(
df3['StartDate'].astype('datetime64'),
df3['EndDate'].astype('datetime64'))
]
Thanks!