I can see some points in your question, lets go through them in order:
1. Can I pass a function as a parameter to someone?
Yes:
def f(op, x, y):
return op(x, y)
def add(x, y):
return x + y
f(add, 10, 7) #gives 17
2. What about operators then?
Unlike scheme, Python operators are not functions so you can't pass them directly as parameters. You can either create the wrapper functions yourself or you can import the operator module from the standard library.
import operator
operator.add(1, 2)
(lambda x,y : x+y)(1, 2)
Operators not being real functions is a little sad in most cases but at least Python gives us chained comparisons like 10 <= x < 100 in exchange...
3. So what is the difference between Python and Scheme then?
In the general sense, functions in Python are as powerful as functions in Scheme, however there are some things to note:
The lambda keyword is limited
You can only have a single expression as the function body
f = lambda x, y: x + y
Since there are a bunch of things in Python that are statements and not expressions (assignments, the 2.x print, ...), you often need to fall back to named functions instead.
There are closures
def make_printer(msg):
def printer():
print msg
return printer
printer('a message')()
But mutating variables in them is a pain
This doesn't work. It tries to bind a new n for the inner function instead of using the outer one
def make_counter(n):
def inc():
n = n + 1
return n
return inc
new 3.x nonlocal keyword
def make_counter(n):
def inc():
nonlocal n
n = n + 1
return n
return inc
workaround w/ mutable objects
def make_counter(n):
nw = [n]
def inc():
nw[0] = nw[0] + 1
return nw[0]
return inc
Objects instead of closures. Uses the magic __call__ method to pretend its a function
class Counter:
def __init__(self, n):
self.n = n
def __call__(self):
self.n += 1
return self.n
sum(),any(),all()