I have a problem with a series of functions. I have an array of 'return values' (i compute them through matrices) from a single function sys which depends on a integer variable, lets say, j, and I want to return them according to this j , i mean, if i want the equation number j, for example, i just write sys(j) For this, i used a for loop but i don't know if it's well defined, because when i run my code, i don't get the right values. Is there a better way to have an array of functions and call them in a easy way? That would make easier to work with a function in a Runge Kutta method to solve a diff equation.
I let this part of the code here: (c is just the j integer i used to explain before)
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
int N=3;
double s=10.;
//float r=28.;
double b=8.0/3.0;
/ * Define functions * /
double sys(int c,double r,double y[])
{
int l,m,n,p=0;
double tmp;
double t[3][3]={0};
double j[3][3]={{-s,s,0},{r-y[2],-1,-y[0]},{y[1],y[0],-b}}; //Jacobiano
double id[3][3] = { {y[3],y[6],y[9]} , {y[4],y[7],y[10]} , {y[5],y[8],y[11]} };
double flat[N*(N+1)];
// Multiplication of matrices J * Y
for(l=0;l<N;l++)
{
for(m=0;m<N;m++)
{
for(n=0;n<N;n++)
{
t[l][m] += j[l][n] * id[n][m];
}
}
}
// Transpose the matrix (J * Y) -> () t
for(l=0;l<N;l++)
{
for(m=l+1;m<N;m++)
{
tmp = t[l][m];
t[l][m] = t[m][l];
t[m][l] = tmp;
}
}
// We flatten the array to be left in one array
for(l=0;l<N;l++)
{
for(m=0;m<N;m++)
{
flat[p+N] = t[l][m];
}
}
flat[0] = s*(y[1]-y[0]);
flat[1] = y[0]*(r-y[2])-y[1];
flat[2] = y[0]*y[1]-b*y[2];
for(l=0;l<(N*(N+1));l++)
{
if(c==l)
{
return flat[c];
}
}
}
EDIT ----------------------------------------------------------------
Ok, this is the part of the code where i use the function
int main(){
output = fopen("lyapcoef.dat","w");
int j,k;
int N2 = N*N;
int NN = N*(N+1);
double r;
double rmax = 29;
double t = 0;
double dt = 0.05;
double tf = 50;
double z[NN]; // Temporary matrix for RK4
double k1[N2],k2[N2],k3[N2],k4[N2];
double y[NN]; // Matrix for all variables
/* Initial conditions */
double u[N];
double phi[N][N];
double phiu[N];
double norm;
double lyap;
//Here we integrate the system using Runge-Kutta of fourth order
for(r=28;r<rmax;r++){
y[0]=19;
y[1]=20;
y[2]=50;
for(j=N;j<NN;j++) y[j]=0;
for(j=N;j<NN;j=j+3) y[j]=1; // Identity matrix for y from 3 to 11
while(t<tf){
/* RK4 step 1 */
for(j=0;j<NN;j++){
k1[j] = sys(j,r,y)*dt;
z[j] = y[j] + k1[j]*0.5;
}
/* RK4 step 2 */
for(j=0;j<NN;j++){
k2[j] = sys(j,r,z)*dt;
z[j] = y[j] + k2[j]*0.5;
}
/* RK4 step 3 */
for(j=0;j<NN;j++){
k3[j] = sys(j,r,z)*dt;
z[j] = y[j] + k3[j];
}
/* RK4 step 4 */
for(j=0;j<NN;j++){
k4[j] = sys(j,r,z)*dt;
}
/* Updating y matrix with new values */
for(j=0;j<NN;j++){
y[j] += (k1[j]/6.0 + k2[j]/3.0 + k3[j]/3.0 + k4[j]/6.0);
}
printf("%lf %lf %lf \n",y[0],y[1],y[2]);
t += dt;
}