91

I wish to create a class in Python that I can add and remove attributes and methods. How can I acomplish that?

Oh, and please don't ask why.

5

8 Answers 8

132

This example shows the differences between adding a method to a class and to an instance.

>>> class Dog():
...     def __init__(self, name):
...             self.name = name
...
>>> skip = Dog('Skip')
>>> spot = Dog('Spot')
>>> def talk(self):
...     print 'Hi, my name is ' + self.name
...
>>> Dog.talk = talk # add method to class
>>> skip.talk()
Hi, my name is Skip
>>> spot.talk()
Hi, my name is Spot
>>> del Dog.talk # remove method from class
>>> skip.talk() # won't work anymore
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Dog instance has no attribute 'talk'
>>> import types
>>> f = types.MethodType(talk, skip, Dog)
>>> skip.talk = f # add method to specific instance
>>> skip.talk()
Hi, my name is Skip
>>> spot.talk() # won't work, since we only modified skip
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: Dog instance has no attribute 'talk'
Sign up to request clarification or add additional context in comments.

9 Comments

Note that you can only do this to classes, not instances. If you do puppy.talk = talk, talk will not be a "bound method", that is to say, it won't get the implicit "self" argument.
To augment Paul's comment: if you wish to monkeypatch an instance method: "import types; f = types.MethodType(talk, puppy, Dog); puppy.talk = f"
+1 to Paolo for demonstrating the dynamic effect of assigning and deleting class method attributes.
Thanks for the great comments guys, I updated the answer to show the differences.
Very nice edited example... it should almost go in the Python API docs for the types module, which are woefully inadequate.
|
48

I wish to create a class in Python that I can add and remove attributes and methods.

import types

class SpecialClass(object):
    @classmethod
    def removeVariable(cls, name):
        return delattr(cls, name)

    @classmethod
    def addMethod(cls, func):
        return setattr(cls, func.__name__, types.MethodType(func, cls))

def hello(self, n):
    print n

instance = SpecialClass()
SpecialClass.addMethod(hello)

>>> SpecialClass.hello(5)
5

>>> instance.hello(6)
6

>>> SpecialClass.removeVariable("hello")

>>> instance.hello(7)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'SpecialClass' object has no attribute 'hello'

>>> SpecialClass.hello(8)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: type object 'SpecialClass' has no attribute 'hello'

2 Comments

Note that this adds a class-method to SpecialClass. It does not add a method that will be available to all future instances of SpecialClass. (I do wonder if there's a way to do that.)_
That would be really interesting.
31

A possibly interesting alternative to using types.MethodType in:

>>> f = types.MethodType(talk, puppy, Dog)
>>> puppy.talk = f # add method to specific instance

would be to exploit the fact that functions are descriptors:

>>> puppy.talk = talk.__get__(puppy, Dog)

3 Comments

I just learned something :) But I think that it looks less readable.
+1 Good alternative syntax, as you say. I'm curious: are there any particular benefits to this approach, or to using "types"? Ultimately, they produce the same result and internal bindings AFAICAT. Does types.MethodType effectively produce a descriptor, or is there more at work?
@NicDumZ, yeah, the __ thingies never really look good. @Jarret, there was at some point of Python 3's design loose talk about abolishing the 'types' module, but it stayed, slimmed down from 37 entries to 12 (the 'new' module did go, yay!-). Semantically they're really the same: MethodType returns the same kind of object that's the result of get -- an instance of <type 'instancemethod'>.
8

I wish to create a class in Python that I can add and remove attributes and methods. How can I acomplish that?

You can add and remove attributes and methods to any class, and they'll be available to all instances of the class:

>>> def method1(self):
       pass

>>> def method1(self):
       print "method1"

>>> def method2(self):
       print "method2"

>>> class C():
       pass

>>> c = C()
>>> c.method()

Traceback (most recent call last):
  File "<pyshell#62>", line 1, in <module>
    c.method()
AttributeError: C instance has no attribute 'method'

>>> C.method = method1
>>> c.method()
    method1
>>> C.method = method2
>>> c.method()
    method2
>>> del C.method
>>> c.method()

Traceback (most recent call last):
  File "<pyshell#68>", line 1, in <module>
    c.method()
AttributeError: C instance has no attribute 'method'
>>> C.attribute = "foo"
>>> c.attribute
    'foo'
>>> c.attribute = "bar"
>>> c.attribute
    'bar'

Comments

5

you can just assign directly to the class (either by accessing the original class name or via __class__ ):

class a : pass
ob=a()
ob.__class__.blah=lambda self,k: (3, self,k)
ob.blah(5)
ob2=a()
ob2.blah(7)

will print

(3, <__main__.a instance at 0x7f18e3c345f0>, 5)
(3, <__main__.a instance at 0x7f18e3c344d0>, 7)

Comments

1

Simply:

f1 = lambda:0                   #method for instances
f2 = lambda _:0                 #method for class
class C: pass                   #class

c1,c2 = C(),C()                 #instances

print dir(c1),dir(c2)

#add to the Instances
c1.func = f1
c1.any = 1.23

print dir(c1),dir(c2)
print c1.func(),c1.any

del c1.func,c1.any

#add to the Class
C.func = f2
C.any = 1.23

print dir(c1),dir(c2)
print c1.func(),c1.any
print c2.func(),c2.any

which results in:

['__doc__', '__module__'] ['__doc__', '__module__']
['__doc__', '__module__', 'any', 'func'] ['__doc__', '__module__']
0 1.23
['__doc__', '__module__', 'any', 'func'] ['__doc__', '__module__', 'any', 'func']
0 1.23
0 1.23

Comments

0

another alternative, if you need to replace the class wholesale is to modify the class attribute:

>>> class A(object):
...     def foo(self):
...         print 'A'
... 
>>> class B(object):
...     def foo(self):
...         print 'Bar'
... 
>>> a = A()
>>> a.foo()
A
>>> a.__class__ = B
>>> a.foo()
Bar

2 Comments

Interesting, but the point was to modify methods @ runtime. This looks like an idea for IoC container with runtime switching :)
Yes, switching class allows you to modify methods wholesale, especially when you add this with the fact that python allows multiple inheritance and python classes are mutable, it can lead to some pretty powerful dynamic techniques or very unmaintainable code.
0

Does the class itself necessarily need to be modified? Or is the goal simply to replace what object.method() does at a particular point during runtime?

I ask because I sidestep the problem of actually modifying the class to monkey patch specific method calls in my framework with getattribute and a Runtime Decorator on my Base inheritance object.

Methods retrieved by a Base object in getattribute are wrapped in a Runtime_Decorator that parses the method calls keyword arguments for decorators/monkey patches to apply.

This enables you to utilize the syntax object.method(monkey_patch="mypatch"), object.method(decorator="mydecorator"), and even object.method(decorators=my_decorator_list).

This works for any individual method call (I leave out magic methods), does so without actually modifying any class/instance attributes, can utilize arbitrary, even foreign methods to patch, and will work transparently on sublcasses that inherit from Base (provided they don't override getattribute of course).

import trace

def monkey_patched(self, *args, **kwargs):
    print self, "Tried to call a method, but it was monkey patched instead"
    return "and now for something completely different"

class Base(object):

    def __init__(self):
        super(Base, self).__init__()

    def testmethod(self):
        print "%s test method" % self

    def __getattribute__(self, attribute):
        value = super(Base, self).__getattribute__(attribute)
        if "__" not in attribute and callable(value):
            value = Runtime_Decorator(value)
        return value

class Runtime_Decorator(object):

    def __init__(self, function):
        self.function = function

    def __call__(self, *args, **kwargs):

        if kwargs.has_key("monkey_patch"):
            module_name, patch_name = self._resolve_string(kwargs.pop("monkey_patch"))
            module = self._get_module(module_name)
            monkey_patch = getattr(module, patch_name)
            return monkey_patch(self.function.im_self, *args, **kwargs)

        if kwargs.has_key('decorator'):
            decorator_type = str(kwargs['decorator'])

            module_name, decorator_name = self._resolve_string(decorator_type)
            decorator = self._get_decorator(decorator_name, module_name)
            wrapped_function = decorator(self.function)
            del kwargs['decorator']
            return wrapped_function(*args, **kwargs)

        elif kwargs.has_key('decorators'):
            decorators = []

            for item in kwargs['decorators']:
                module_name, decorator_name = self._resolve_string(item)
                decorator = self._get_decorator(decorator_name, module_name)
                decorators.append(decorator)

            wrapped_function = self.function
            for item in reversed(decorators):
                wrapped_function = item(wrapped_function)
            del kwargs['decorators']
            return wrapped_function(*args, **kwargs)

        else:
            return self.function(*args, **kwargs)

    def _resolve_string(self, string):
        try: # attempt to split the string into a module and attribute
            module_name, decorator_name = string.split(".")
        except ValueError: # there was no ".", it's just a single attribute
            module_name = "__main__"
            decorator_name = string
        finally:
            return module_name, decorator_name

    def _get_module(self, module_name):
        try: # attempt to load the module if it exists already
            module = modules[module_name]
        except KeyError: # import it if it doesn't
            module = __import__(module_name)
        finally:
            return module

    def _get_decorator(self, decorator_name, module_name):
        module = self._get_module(module_name)
        try: # attempt to procure the decorator class
            decorator_wrap = getattr(module, decorator_name)
        except AttributeError: # decorator not found in module
            print("failed to locate decorators %s for function %s." %\
            (kwargs["decorator"], self.function))
        else:
            return decorator_wrap # instantiate the class with self.function

class Tracer(object):

    def __init__(self, function):
        self.function = function

    def __call__(self, *args, **kwargs):
        tracer = trace.Trace(trace=1)
        tracer.runfunc(self.function, *args, **kwargs)

b = Base()
b.testmethod(monkey_patch="monkey_patched")
b.testmethod(decorator="Tracer")
#b.testmethod(monkey_patch="external_module.my_patch")

The downside to this approach is getattribute hooks all access to attributes, so the checking of and potential wrapping of methods occurs even for attributes that are not methods + won't be utilizing the feature for the particular call in question. And using getattribute at all is inherently somewhat complicated.

The actual impact of this overhead in my experience/for my purposes has been negligible, and my machine runs a dual core Celeron. The previous implementation I used introspected methods upon object init and bound the Runtime_Decorator to methods then. Doing things that way eliminated the need to utilize getattribute and reduced the overhead mentioned previously... however, it also breaks pickle (maybe not dill) and is less dynamic then this approach.

The only use cases I have actually come across "in the wild" with this technique were with timing and tracing decorators. However, the possibilities it opens up are extremely wide ranging.

If you have a preexisting class that cannot be made to inherit from a different base (or utilize the technique it's own class definition or in it's base class'), then the whole thing simply does not apply to your issue at all unfortunately.

I don't think setting/removing non-callable attributes on a class at runtime is necessarily so challenging? unless you want classes that inherit from the modified class to automatically reflect the changes in themselves as well... That'd be a whole 'nother can o' worms by the sound of it though.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.