1: As your code is now, yes, that is the right way to do it. If you weren't using ARC (assuming you are currently), you'd also want to retain the value to assert ownership. This will be done automatically under ARC. Keep in mind that that is not the only way of doing it; you could redeclare the property as readwrite in the class extension in the implementation file. This is a common practice which allows you to have the benefits of a readwrite property while having the property still be readonly to users of the class. Ex.
//MyClass.h
@interface MyClass : NSObject
@property (nonatomic, strong, readonly) NSNumber* number;
- (void) initWithNumber:(NSNumber*)number;
@end
//MyClass.m
@interface MyClass ()
@property (nonatomic, strong, readwrite) NSNumber* number;
@end
@implementation MyClass
//this changes the instance variable backing the property to _number.
@synthesize number = _number;
- (void) initWithNumber:(NSNumber*)number{
self = [super init];
if (self) {
self.number = number;
}
return self;
}
@end
At the end of the day, I'd say it's a good habit to use setters whenever you can to keep things KVO compliant and so that you always know when values change. For instance, if you have a custom UIView with a property that is reflected in its appearance, chances are you'd want to redisplay yourself when it changes. The easiest way to do this is to implement the setter yourself and call setNeedsDisplay after setting the value. You couldn't do that if you set the instance value backing the property directly; the user of the class would have to remember to call setneedsDisplay every time they set it, manually.
2: One goes through the setter method, giving you a way to know when a value is going to be set, while one sets a value to the instance variable backing the property. The setter method will always handle memory management in the way it was told to, while it's up to you to do things such as copying values for a copy setter if you assign directly to an instance variable, so that you maintain some consistent scheme. Going through setters sometimes, and not others can lead to some nasty bugs if you don't be careful. Never going through setters makes it hard to know when values change, making it near impossible to weed out invalid values. For instance, if you had an int property you wanted to limit to values in some range and someone passed in a value under the minimum limit, you'd probably want to set the property to the lowest possible value in the range. You can't do that without the value going through the setter first.