You are on the right tract with defining the dtype. You are just missing the field shape.
I'll demonstrate:
A 'text' file - a list of lines (bytes in Py3):
In [95]: txt=b"""label1, 12, 23.2, 232
....: label2, 23, 2324, 324
....: label3, 34, 123, 2141
....: label4, 0, 2, 3
....: """
In [96]: txt=txt.splitlines()
A dtype with 2 fields, one with strings, the other with floats (3 for 'field shape'):
In [98]: dt=np.dtype([('label','U10'),('values', 'float',(3))])
In [99]: data=np.genfromtxt(txt,delimiter=',',dtype=dt)
In [100]: data
Out[100]:
array([('label1', [12.0, 23.2, 232.0]), ('label2', [23.0, 2324.0, 324.0]),
('label3', [34.0, 123.0, 2141.0]), ('label4', [0.0, 2.0, 3.0])],
dtype=[('label', '<U10'), ('values', '<f8', (3,))])
In [101]: data['label']
Out[101]:
array(['label1', 'label2', 'label3', 'label4'],
dtype='<U10')
In [103]: data['values']
Out[103]:
array([[ 1.20000000e+01, 2.32000000e+01, 2.32000000e+02],
[ 2.30000000e+01, 2.32400000e+03, 3.24000000e+02],
[ 3.40000000e+01, 1.23000000e+02, 2.14100000e+03],
[ 0.00000000e+00, 2.00000000e+00, 3.00000000e+00]])
With this definition the numeric values can be accessed as a 2d array. Sub-arrays like this are under appreciated.
The dtype could be been specified with the dictionary syntax, but I'm more familiar with the list of tuples form.
Equivalent dtype specs:
np.dtype("U10, (3,)f")
np.dtype({'names':['label','values'], 'formats':['S10','(3,)f']})
np.genfromtxt(txt,delimiter=',',dtype='S10,(3,)f')
===============================
I think that this txt, if parsed with dtype=None would produce
In [30]: y
Out[30]:
array([('label1', 12.0, 23.2, 232.0), ('label2', 23.0, 2324.0, 324.0),
('label3', 34.0, 123.0, 2141.0), ('label4', 0.0, 2.0, 3.0)],
dtype=[('f0', '<U10'), ('f1', '<f8'), ('f2', '<f8'), ('f3', '<f8')])
The could be converted to the subfield form with
y.view(dt)
This works as long as the underlying data representation (seen as a flat list of bytes) is compatible (here 10 unicode characters (40 bytes), and 3 floats, per record).