2

The following is more or less straight python code which functionally extracts exactly as I want. The data schema for the column I'm filtering out within the dataframe is basically a json string.

However, I had to greatly bump up the memory requirement for this and I'm only running on a single node. Using a collect is probably bad and creating all of this on a single node really isn't taking advantage of the distributed nature of Spark.

I'd like a more Spark centric solution. Can anyone help me massage the logic below to better take advantage of Spark? Also, as a learning point: please provide an explanation for why/how the updates make it better.

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import json

from pyspark.sql.types import SchemaStruct, SchemaField, StringType


input_schema = SchemaStruct([
    SchemaField('scrubbed_col_name', StringType(), nullable=True)
])


output_schema = SchemaStruct([
    SchemaField('val01_field_name', StringType(), nullable=True),
    SchemaField('val02_field_name', StringType(), nullable=True)
])


example_input = [
    '''[{"val01_field_name": "val01_a", "val02_field_name": "val02_a"},
        {"val01_field_name": "val01_a", "val02_field_name": "val02_b"},
        {"val01_field_name": "val01_b", "val02_field_name": "val02_c"}]''',
    '''[{"val01_field_name": "val01_c", "val02_field_name": "val02_a"}]''',
    '''[{"val01_field_name": "val01_a", "val02_field_name": "val02_d"}]''',
]

desired_output = {
    'val01_a': ['val_02_a', 'val_02_b', 'val_02_d'],
    'val01_b': ['val_02_c'],
    'val01_c': ['val_02_a'],
}


def capture(dataframe):
    # Capture column from data frame if it's not empty
    data = dataframe.filter('scrubbed_col_name != null')\
                    .select('scrubbed_col_name')\
                    .rdd\
                    .collect()

    # Create a mapping of val1: list(val2)
    mapping = {}
    # For every row in the rdd
    for row in data:
        # For each json_string within the row
        for json_string in row:
            # For each item within the json string
            for val in json.loads(json_string):
                # Extract the data properly
                val01 = val.get('val01_field_name')
                val02 = val.get('val02_field_name')
                if val02 not in mapping.get(val01, []):
                    mapping.setdefault(val01, []).append(val02)
    return mapping

1 Answer 1

3

One possible solution:

(df
  .rdd  # Convert to rdd
  .flatMap(lambda x: x)  # Flatten rows
  # Parse JSON. In practice you should add proper exception handling
  .flatMap(lambda x: json.loads(x))
  # Get values
  .map(lambda x: (x.get('val01_field_name'), x.get('val02_field_name')))
  # Convert to final shape
  .groupByKey())

Given output specification this operation is not exactly efficient (do you really require grouped values?) but still much better than collect.

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.