Simply use np.concatenate:
>>> import numpy as np
>>> arr = np.array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
>>> np.concatenate((np.array([0,0,0])[:, np.newaxis], arr), axis=1)
array([[0, 1, 2, 3],
[0, 4, 5, 6],
[0, 7, 8, 9]])
But hstack works too:
>>> np.hstack((np.array([0,0,0])[:, np.newaxis], arr))
array([[0, 1, 2, 3],
[0, 4, 5, 6],
[0, 7, 8, 9]])
The only "tricky" part is that both arrays must have the same number of dimensions, that's why I added the [:, np.newaxis] - which adds a new dimension.
How to change the zeros to ones is left as an (easy) exercise :-)
If you want to prepend a 2D array you have to drop the [:, np.newaxis] part:
np.concatenate((np.zeros((3,3), dtype=int), arr), axis=1)
array([[0, 0, 0, 1, 2, 3],
[0, 0, 0, 4, 5, 6],
[0, 0, 0, 7, 8, 9]])