1

I am trying to create a dataframe out of json data using pyspark module ,but not able to do,tried doing it with sqlContext.read.json but not getting proper result.

sample json data:

{
"userId":"rirani",
"jobTitleName":"Developer",
"firstName":"Romin",
"lastName":"Irani",
"preferredFullName":"Romin Irani",
"employeeCode":"E1",
"region":"CA",
"phoneNumber":"408-1234567",
"emailAddress":"[email protected]"
},
{
"userId":"nirani",
"jobTitleName":"Developer",
"firstName":"Neil",
"lastName":"Irani",
"preferredFullName":"Neil Irani",
"employeeCode":"E2",
"region":"CA",
"phoneNumber":"408-1111111",
"emailAddress":"[email protected]"
}
{
"userId":"thanks",
"jobTitleName":"Program Directory",
"firstName":"Tom",
"lastName":"Hanks",
"preferredFullName":"Tom Hanks",
"employeeCode":"E3",
"region":"CA",
"phoneNumber":"408-2222222",
"emailAddress":"[email protected]"
}

expected o/p:in table format.can anyone help me this.

1
  • And what result are you getting? What does o/p:in mean? Commented Jun 22, 2018 at 12:56

1 Answer 1

2

You can do use SparkSession:

my_json = [{ 
     "userId":"rirani",
    "jobTitleName":"Developer", 
    "firstName":"Romin", 
    "lastName":"Irani", 
    "preferredFullName":"Romin Irani",
     "employeeCode":"E1",
     "region":"CA",
     "phoneNumber":"408-1234567",
     "emailAddress":"[email protected]" 
    }, 
    { "userId":"nirani", 
    "jobTitleName":"Developer", 
    "firstName":"Neil", 
    "lastName":"Irani",
    "preferredFullName":"Neil Irani",
    "employeeCode":"E2", "region":"CA",
    "phoneNumber":"408-1111111",
    "emailAddress":"[email protected]" 
    },
    { "userId":"thanks", 
    "jobTitleName":"Program Directory",
    "firstName":"Tom", 
    "lastName":"Hanks", 
    "preferredFullName":"Tom Hanks",         "employeeCode":"E3", "region":"CA", "phoneNumber":"408-2222222",
"emailAddress":"[email protected]"
         }]

json_df = spark.read.json(my_json)
json_df.show()
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.