why does
char *names [] = {"hello", "Jordan"};
work fine
but this does not
char names [] = {"hello", "Jordan"};
would appreciate if someone could explain this to me, thank you :).
Here
char *names [] = {"hello", "Jordan"};
names is array of char pointers i.e it can holds pointers i.e names each elements itself is one char array. But here
char names [] = {"hello", "Jordan"};
names is just a char array i.e it can hold only single char array like "hello" not multiple.
In second case like
int main(void) {
char names[] = {"hello", "Jordan"};
return 0;
}
when you compile(Suggest you to compile with -Wall -pedantic -Wstrict-prototypes -Werror flags), compiler clearly says
error: excess elements in char array initializer
which means you can't have more than one char array in this case. Correct one is
char names[] = {'h','e','l','l','o','\0'}; /* here names is array of characters */
Edit :- Also there is more possibility if syntax of names looks like below
char names[] = { "hello" "Jordan" }; /* its a valid one */
then here both hello and Jordan gets joined & it becomes single char array helloJordan.
char names[] = { "helloJordan" };
The first is an array of pointers to char. The second is an array of char and would have to look like char names[] = {'a', 'b', 'c'}
char names[] = "abc" - with an implicit \0 as fourth element.A string literal, such as "hello", is stored in static memory as an array of chars. In fact, a string literal has type char [N], where N is the number of characters in the array (including the \0 terminator). In most cases, an array identifier decays to a pointer to the first element of the array, so in most expressions a string literal such as "hello" will decay to a pointer to the char element 'h'.
char *names[] = { "hello", "Jordan" };
Here the two string literals decay to pointers to char which point to 'h' and 'J', respectively. That is, here the string literals have type char * after the conversion. These types agree with the declaration on the left, and the array names[] (which is not an array of character type, but an array of char *) is initialized using these two pointer values.
char names[] = "hello";
or similarly:
char names[] = { "hello" };
Here we encounter a special case. Array identifiers are not converted to pointers to their first elements when they are operands of the sizeof operator or the unary & operator, or when they are string literals used to initialize an array of character type. So in this case, the string literal "hello" does not decay to a pointer; instead the characters contained in the string literal are used to initialize the array names[].
char names[] = {"hello", "Jordan"};
Again, the string literals would be used to initialize the array names[], but there are excess initializers in the initializer list. This is a constraint violation according to the Standard. From §6.7.9 ¶2 of the C11 Draft Standard:
No initializer shall attempt to provide a value for an object not contained within the entity being initialized.
A conforming implementation must issue a diagnostic in the event of a constraint violation, which may take the form of a warning or an error. On the version of gcc that I am using at the moment (gcc 6.3.0) this diagnostic is an error:
error: excess elements in char array initializer
Yet, for arrays of char that are initialized by an initializer list of char values rather than by string literals, the same diagnostic is a warning instead of an error.
In order to initialize an array of char that is not an array of pointers, you would need a 2d array of chars here. Note that the second dimension is required, and must be large enough to contain the largest string in the initializer list:
char names[][100] = { "hello", "Jordan" };
Here, each string literal is used to initialize an array of 100 chars contained within the larger 2d array of chars. Or, put another way, names[][] is an array of arrays of 100 chars, each of which is initialized by a string literal from the initializer list.
char name[] is an array of characters so you can store a word in it:
char name[] = "Muzol";
This is the same of:
char name[] = {'M', 'u', 'z', 'o', 'l', '\0'}; /* '\0' is NULL, it means end of the array */
And char* names[] is an array of arrays where each element of the first array points to the start of the elements of the second array.
char* name[] = {"name1", "name2"};
It's the same of:
char name1[] = {'n', 'a', 'm', 'e', '1', '\0'}; /* or char name1[] = "name1"; */
char name2[] = {'n', 'a', 'm', 'e', '2', '\0'}; /* or char name2[] = "name2"; */
char* names[] = { name1, name2 };
So basically names[0] points to &name1[0], where it can read the memory until name1[5], this is where it finds the '\0' (NULL) character and stops. The same happens for name2[];
chars. I guess this should be enough to explain why the first one is OK and the second one is not...char[]is an array of characters, not an array of strings. It's the same reasonchar *foo = "Hi";works, butchar foo = "Hi";does not (though the first one really should beconst char *).*does not make a difference? What is unclear about the*in a declaration, what does your textbook omit?