0

I am not able to load images into numpy array and getting an error like this...

ValueError: could not broadcast input array from shape (175,217,3) into shape (100,100,3)

The function code:

import cv2
import numpy as np
import os

train_data_dir = '/home/ec2-user/SageMaker/malaria-detection-model/malaria/training'
valid_data_dir = '/home/ec2-user/SageMaker/malaria-detection-model/malaria/validation'

# declare the number of samples in each category
nb_train_samples = 22045 #  training samples
nb_valid_samples = 5513#  validation samples
num_classes = 2
img_rows_orig = 100
img_cols_orig = 100

def load_training_data():
    labels = os.listdir(train_data_dir)
    total = len(labels)

    X_train = np.ndarray((nb_train_samples, img_rows_orig, img_cols_orig, 3), dtype=np.uint8)
    Y_train = np.zeros((nb_train_samples,), dtype='uint8')

    i = 0
    j = 0
    for label in labels:
        image_names_train = os.listdir(os.path.join(train_data_dir, label))
        total = len(image_names_train)
        print(label, total)
        for image_name in image_names_train:
            img = cv2.imread(os.path.join(train_data_dir, label, image_name), cv2.IMREAD_COLOR)
            img = np.array([img])
            X_train[i] = img
            Y_train[i] = j

            if i % 100 == 0:
                print('Done: {0}/{1} images'.format(i, total))
            i += 1
        j += 1    
    print(i)                
    print('Loading done.')

    np.save('imgs_train.npy', X_train, Y_train)
    return X_train, Y_train

This function is part of the file load_data.py that can be found in malaria_cell_classification_code.zip file from:

https://ceb.nlm.nih.gov/repositories/malaria-datasets/


I tried to change X_train and Y_train to list instead of numpy array. The function halts at np.save method.

X_train = Y_train = list()
        X_train.append(img)
        Y_train.append(j)

What is the correct and standard way to save images in numpy?


After resizing the image, I get different error:

Done: 19400/9887 images
Done: 19500/9887 images
Done: 19600/9887 images
Done: 19700/9887 images
Done: 19800/9887 images
19842
Loading done.
Transform targets to keras compatible format.
Done: 19800/9887 images
19842
Loading done.
Transform targets to keras compatible format.
------------------------------
Creating validation images...
------------------------------
Parasitized 1098
---------------------------------------------------------------------------
error                                     Traceback (most recent call last)
<ipython-input-6-8008be74f482> in <module>()
      2 #load data for training
      3 X_train, Y_train = load_resized_training_data(img_rows, img_cols)
----> 4 X_valid, Y_valid = load_resized_validation_data(img_rows, img_cols)
      5 #print the shape of the data
      6 print(X_train.shape, Y_train.shape, X_valid.shape, Y_valid.shape)

~/SageMaker/malaria-detection-model/malaria_cell_classification_code/load_data.py in load_resized_validation_data(img_rows, img_cols)
    103 def load_resized_validation_data(img_rows, img_cols):
    104 
--> 105     X_valid, Y_valid = load_validation_data()
    106 
    107     # Resize images

~/SageMaker/malaria-detection-model/malaria_cell_classification_code/load_data.py in load_validation_data()
     75 
     76             img = np.array([img])
---> 77             img2 = cv2.resize(img, (100, 100))
     78             X_valid[i] = img2
     79             Y_valid[i] = j

error: OpenCV(4.0.0) /io/opencv/modules/imgproc/src/resize.cpp:3427: error: (-215:Assertion failed) !dsize.empty() in function 'resize'


------------------------------
Creating validation images...
------------------------------
Parasitized 1098
---------------------------------------------------------------------------
error                                     Traceback (most recent call last)
<ipython-input-6-8008be74f482> in <module>()
      2 #load data for training
      3 X_train, Y_train = load_resized_training_data(img_rows, img_cols)
----> 4 X_valid, Y_valid = load_resized_validation_data(img_rows, img_cols)
      5 #print the shape of the data
      6 print(X_train.shape, Y_train.shape, X_valid.shape, Y_valid.shape)

~/SageMaker/malaria-detection-model/malaria_cell_classification_code/load_data.py in load_resized_validation_data(img_rows, img_cols)
    103 def load_resized_validation_data(img_rows, img_cols):
    104 
--> 105     X_valid, Y_valid = load_validation_data()
    106 
    107     # Resize images

~/SageMaker/malaria-detection-model/malaria_cell_classification_code/load_data.py in load_validation_data()
     75 
     76             img = np.array([img])
---> 77             img2 = cv2.resize(img, (100, 100))
     78             X_valid[i] = img2
     79             Y_valid[i] = j

error: OpenCV(4.0.0) /io/opencv/modules/imgproc/src/resize.cpp:3427: error: (-215:Assertion failed) !dsize.empty() in function 'resize'

The complete script can be found here...

https://gist.github.com/shantanuo/cfe0913b367647890451f5ae3f6fb691

2
  • 2
    I think you need to resize the image after reading it. resized_image = cv2.resize(img, (100, 100)) Commented Jan 22, 2019 at 4:48
  • Wait, so which line in your original code raises the ValueError? Commented Jan 22, 2019 at 4:53

1 Answer 1

1

opencv2 already returns a numpy array. Don't make a new one, especially not one with an additional level of nesting:

img = cv2.imread(os.path.join(train_data_dir, label, image_name), cv2.IMREAD_COLOR)
img = cv2.resize(img, (100, 100))
Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.