The goal is to plot some data using plotly where the text param contains multiple columns.
Here is my DataFrame:
import pandas as pd
import numpy as np
import plotly as py
import plotly.graph_objs as go
np.random.seed(1)
df = pd.DataFrame({'Mean Age': np.random.randint(40,60,10),
'Percent': np.random.randint(20,80,10),
'Number Column': np.random.randint(100,500,10)},
index=list('ABCDEFGHIJ'))
df.index.name = 'Text Column'
df = df.sort_values('Mean Age')
Here is an example of how I plotted the data with text from one column to show on hover:
# trace for Percent
trace0 = go.Scatter(
x = df.index,
y = df['Percent'],
name = 'Percent',
text = df['Mean Age'], # text to show on hover from df column
mode = 'lines+markers',
line = dict(
color = ('rgb(0,0,255)'), # blue
width = 4)
)
layout = dict(title = 'Test Plot',
xaxis = dict(title = 'Text Column'),
yaxis = dict(title = 'Percent'),
)
data = [trace0]
fig = dict(data=data, layout=layout)
py.offline.plot(fig, filename = 'Test_Plot.html')
I am looking to add another column's data to the text param. I can accomplish this by doing some list comprehensions but is there an easier/more efficient way to do this?
I am looking for an output similar to what is below but in a more efficient way than using list comprehension:
# column values to list
num = list(df['Number Column'])
age = list(df['Mean Age'])
# trace for Percent
trace0 = go.Scatter(
x = df.index,
y = df['Percent'],
name = 'Percent',
# list comprehension to get the data to show
text = [f'Number Column: {x}; Mean Age: {y}' for x,y in list(zip(num, age))],
mode = 'lines+markers',
line = dict(
color = ('rgb(0,0,255)'), # blue
width = 4)
)
layout = dict(title = 'Test Plot',
xaxis = dict(title = 'Text Column'),
yaxis = dict(title = 'Percent'),
)
data = [trace0]
fig = dict(data=data, layout=layout)
py.offline.plot(fig, filename = 'Test_Plot_Output.html')
(string or array of strings)according to the documentation, so I guess you are stuck here. Optimizing the list comprehension seems the only option.array of strings; however, theseriesor ratherndarrayofdf['Mean Age]isnumpy.int32and it works despite beingarray of int32. Irregardless, I suppose I can do something likelist(map(str, zip(df['Mean Age'], df['Number Column']))), which should be faster than list comprehension.