1

I am trying to run nvidia inference server through docker I got the correct Image of triton server from docker

but when docker logs sample-tis-22.04 --tail 40

It shows this :

I0610 15:59:37.597914 1 server.cc:576]
+-------------+-------------------------------------------------------------------------+--------+
| Backend     | Path                                                                    | Config |
+-------------+-------------------------------------------------------------------------+--------+
| pytorch     | /opt/tritonserver/backends/pytorch/libtriton_pytorch.so                 | {}     |
| tensorflow  | /opt/tritonserver/backends/tensorflow1/libtriton_tensorflow1.so         | {}     |
| onnxruntime | /opt/tritonserver/backends/onnxruntime/libtriton_onnxruntime.so         | {}     |
| openvino    | /opt/tritonserver/backends/openvino_2021_4/libtriton_openvino_2021_4.so | {}     |
+-------------+-------------------------------------------------------------------------+--------+

I0610 15:59:37.597933 1 server.cc:619]
+-------+---------+--------+
| Model | Version | Status |
+-------+---------+--------+
+-------+---------+--------+

W0610 15:59:37.635981 1 metrics.cc:634] Cannot get CUDA device count, GPU metrics will not be available
I0610 15:59:37.636226 1 tritonserver.cc:2123]
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Option                           | Value
                                                                                                          |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| server_id                        | triton
                                                                                                          |
| server_version                   | 2.21.0
                                                                                                          |
| server_extensions                | classification sequence model_repository model_repository(unload_dependents) schedule_policy model_configuration system_shared_memory cuda_shared_memory binary_tensor_data statistics trace |
| model_repository_path[0]         | /models
                                                                                                          |
| model_control_mode               | MODE_NONE
                                                                                                          |
| strict_model_config              | 1
                                                                                                          |
| rate_limit                       | OFF
                                                                                                          |
| pinned_memory_pool_byte_size     | 268435456
                                                                                                          |
| response_cache_byte_size         | 0
                                                                                                          |
| min_supported_compute_capability | 6.0
                                                                                                          |
| strict_readiness                 | 1
                                                                                                          |
| exit_timeout                     | 30
                                                                                                          |
+----------------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+

I0610 15:59:37.638384 1 grpc_server.cc:4544] Started GRPCInferenceService at 0.0.0.0:8001
I0610 15:59:37.638908 1 http_server.cc:3242] Started HTTPService at 0.0.0.0:8000
I0610 15:59:37.680861 1 http_server.cc:180] Started Metrics Service at 0.0.0.0:8002

(nvdiaTritonServer_env) E:\Github\triton_server_ImageModel>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Thu_Mar_28_02:30:10_Pacific_Daylight_Time_2024
Cuda compilation tools, release 12.4, V12.4.131
Build cuda_12.4.r12.4/compiler.34097967_0

(nvdiaTritonServer_env) E:\Github\triton_server_ImageModel>nvidia-smi
Mon Jun 10 21:17:32 2024
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 555.85                 Driver Version: 555.85         CUDA Version: 12.5     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                  Driver-Model | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA GeForce RTX 3060      WDDM  |   00000000:05:00.0  On |                  N/A |
|  0%   49C    P8              9W /  170W |     736MiB /  12288MiB |      1%      Default |
|                                         |                        |                  N/A |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|    0   N/A  N/A      1280    C+G   ...__8wekyb3d8bbwe\WindowsTerminal.exe      N/A      |
|    0   N/A  N/A      2568    C+G   ...siveControlPanel\SystemSettings.exe      N/A      |
|    0   N/A  N/A      2780    C+G   ...\Docker\frontend\Docker Desktop.exe      N/A      |
|    0   N/A  N/A      5840    C+G   C:\Windows\explorer.exe                     N/A      |
|    0   N/A  N/A      6212    C+G   ...al\Discord\app-1.0.9047\Discord.exe      N/A      |
|    0   N/A  N/A      7148    C+G   ...t.LockApp_cw5n1h2txyewy\LockApp.exe      N/A      |
|    0   N/A  N/A      7824    C+G   ...nt.CBS_cw5n1h2txyewy\SearchHost.exe      N/A      |
|    0   N/A  N/A      8068    C+G   ...2txyewy\StartMenuExperienceHost.exe      N/A      |
|    0   N/A  N/A     10332    C+G   ...on\125.0.2535.92\msedgewebview2.exe      N/A      |
|    0   N/A  N/A     10972    C+G   ...5n1h2txyewy\ShellExperienceHost.exe      N/A      |
|    0   N/A  N/A     13484    C+G   ...GeForce Experience\NVIDIA Share.exe      N/A      |
|    0   N/A  N/A     13712    C+G   ...CBS_cw5n1h2txyewy\TextInputHost.exe      N/A      |
|    0   N/A  N/A     18732    C+G   ....0_x64__8wekyb3d8bbwe\HxOutlook.exe      N/A      |
|    0   N/A  N/A     19024    C+G   ...7.0_x64__cv1g1gvanyjgm\WhatsApp.exe      N/A      |
+-----------------------------------------------------------------------------------------+

-- I am using it in anaconda env , I have properly installed cuda and cudnn and also check that nvcc --version is working correctly and outputing

but the log says metric cant be used and model, version and status all are empty despite having correct path .

1 Answer 1

1

Solved this issue: My GPU is rtx3060 And nvidia-smi output current driver version

NVIDIA-SMI 555.85 Driver Version: 555.85 CUDA Version: 12.5

My Docker version :

Current version: 4.30.0 (149282)

is not supporting the driver version 555.65 and cuda 12.5

So Downgrade the NVIDIA Driver to 552.22 and cuda 12.4

by downloading the drive from www.nvidia.com/download/driverResults.aspx/224154/en-us/

Clean Install Only

reboot the system

then run the docker compose , GPU metric and device will be detected by the docker

Sign up to request clarification or add additional context in comments.

Comments

Your Answer

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.